Primality Proving with Elliptic Curves

نویسندگان

  • Laurent Théry
  • Guillaume Hanrot
چکیده

Elliptic curves are fascinating mathematical objects. In this paper, we present the way they have been represented inside the COQ system, and how we have proved that the classical composition law on the points is internal and gives them a group structure. We then describe how having elliptic curves inside a prover makes it possible to derive a checker for proving the primality of natural numbers. Key-words: elliptic curve, formalising mathematics, primality proving Prouver la primalité avec des courbes elliptiques Résumé : Les courbes elliptiques sont des objets mathématiques fascinants. Dans ce travail, nous présentons la façon dont elles ont été représentées dans le système COQ, et comment nous avons prouvé le fait que la loi de composition classique est bien interne et munit l’ensemble des points de la courbe d’une structure de groupe. Nous décrivons alors comment cela permet d’obtenir un vérificateur permettant de prouver la primalité de nombres naturels. Mots-clés : courbe elliptique, formalisation des mathématiques, preuves de primalité Primality Proving with Elliptic Curves 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclotomy Primality Proving

Two rational primes p, q are called dual elliptic if there is an elliptic curve E mod p with q points. They were introduced as an interesting means for combining the strengths of the elliptic curve and cyclotomy primality proving algorithms. By extending to elliptic curves some notions of galois theory of rings used in the cyclotomy primality tests, one obtains a new algorithm which has heurist...

متن کامل

Elliptic Curves, Primality Proving and Some Titanic Primes

We describe how to generate large primes using the primality proving algorithm of Atkin. Figure 1: The Titanic .

متن کامل

Primality Proving Using Elliptic Curves: An Update

In 1986, following the work of Schoof on counting points on elliptic curves over finite fields, new algorithms for primality proving emerged, due to Goldwasser and Kilian on the one hand, and Atkin on the other. The latter algorithm uses the theory of complex multiplication. The algorithm, now called ECPP, has been used for nearly ten years. The purpose of this paper is to give an account of th...

متن کامل

Applications of elliptic curves in public key cryptography

The most popular public key cryptosystems are based on the problem of factorization of large integers and discrete logarithm problem in finite groups, in particular in the multiplicative group of finite field and the group of points on elliptic curve over finite field. Elliptic curves are of special interest since they at present alow much shorter keys, for the same level of security, compared ...

متن کامل

Elliptic Curves and Primality Proving

The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. Problema, números primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum turn veterum turn recentiorum industriam ac sagacitatem occupavisse, tarn notum est, ut de hac re copióse loqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007